Various Commonly Knowing Whether

Su Xinghci

Peking University

November 26, 2017

Outline

(1) Common Knowledge

- Notions of Group knowledge
- What is 'Common'?
- A Brief History of Common knowledge
(2) Various Commonly Knowing Whether
- Different Definitions
- Implication Relations among $C w_{G}$
- Expressivity of the Language
(3) Ideas on Completeness and following work
- Problems in Axiomatization
- Classical Proof Idea of Completeness of PLKC
- Difficulties in proof of Completeness of $P L K w C w^{5}$
- Following Work

Notions of Group knowledge

From knowledge of individuals to knowledge of groups.

$$
\text { Instead of } K_{i} \phi, \text { begin to consider } G_{i \in G} \phi .
$$

Notions of Group knowledge

From knowledge of individuals to knowledge of groups.

$$
\text { Instead of } K_{i} \phi, \text { begin to consider } G_{i \in G} \phi .
$$

- David Hume, in his account of convention in A Treatise of Human Nature, argued that a necessary condition for coordinated activity was that agents all know what behavior to expect from one another. (maybe earliest)

Notions of Group knowledge

From knowledge of individuals to knowledge of groups.

$$
\text { Instead of } K_{i} \phi, \text { begin to consider } G_{i \in G} \phi .
$$

- David Hume, in his account of convention in A Treatise of Human Nature, argued that a necessary condition for coordinated activity was that agents all know what behavior to expect from one another. (maybe earliest)
- In a distributed environment, when we consider the task of performing coordinated actions among number of agents, it does not suffice to to talk only about individual agent's knowledge.

Notions of Group knowledge

From knowledge of individuals to knowledge of groups.

$$
\text { Instead of } K_{i} \phi, \text { begin to consider } G_{i \in G} \phi .
$$

- David Hume, in his account of convention in A Treatise of Human Nature, argued that a necessary condition for coordinated activity was that agents all know what behavior to expect from one another. (maybe earliest)
- In a distributed environment, when we consider the task of performing coordinated actions among number of agents, it does not suffice to to talk only about individual agent's knowledge.
- Social epistemology seeks to redress the imbalance of individual epistemic situation and their social environment by investigating the epistemic effects of social interactions and social systems.

Notions of Group knowledge

From knowledge of individuals to knowledge of groups.

$$
\text { Instead of } K_{i} \phi, \text { begin to consider } G_{i \in G} \phi .
$$

- David Hume, in his account of convention in A Treatise of Human Nature, argued that a necessary condition for coordinated activity was that agents all know what behavior to expect from one another. (maybe earliest)
- In a distributed environment, when we consider the task of performing coordinated actions among number of agents, it does not suffice to to talk only about individual agent's knowledge.
- Social epistemology seeks to redress the imbalance of individual epistemic situation and their social environment by investigating the epistemic effects of social interactions and social systems.

Two keywords: Coordination and Cooperation

Notions of Group knowledge

How to define $G_{i \in G} \phi$ with classical $K_{i} \phi$?

Notions of Group knowledge

How to define $G_{i \in G} \phi$ with classical $K_{i} \phi$?
Actually, The first definition we always naturally ascribe to group knowledge is 'Everyone in the group knows ϕ '.

Notions of Group knowledge

How to define $G_{i \in G} \phi$ with classical $K_{i} \phi$?
Actually, The first definition we always naturally ascribe to group knowledge is 'Everyone in the group knows ϕ '.

- Form: $E_{G} \phi=\bigwedge_{i \in G} K_{i} \phi$
- Names in epistemology: General Knowledge or Mutual knowledge
- In Hume, Without the requisite mutual knowledge, mutually beneficial social conventions would disappear.

Notions of Group knowledge

How to define $G_{i \in G} \phi$ with classical $K_{i} \phi$?
Actually, The first definition we always naturally ascribe to group knowledge is 'Everyone in the group knows ϕ '.

- Form: $E_{G} \phi=\bigwedge_{i \in G} K_{i} \phi$
- Names in epistemology: General Knowledge or Mutual knowledge
- In Hume, Without the requisite mutual knowledge, mutually beneficial social conventions would disappear.
- The concept is important but not enough since we cannot see the cooperation or exchange of information among the group.

Notions of Group knowledge

Some other notions of group knowledge:

Notions of Group knowledge

Some other notions of group knowledge:
(1) 'Someone in the group knows ϕ ': $S_{G} \phi={ }_{d f} \bigvee_{i \in G} K_{i} \phi$

Notions of Group knowledge

Some other notions of group knowledge:
(1) 'Someone in the group knows ϕ ': $S_{G} \phi={ }_{d f} \bigvee_{i \in G} K_{i} \phi$
(2) 'The knowledge is distributed over the group G': $D_{G} \phi$ if $\left\{\psi \mid K_{i} \psi(i \in G)\right\} \vdash \phi$

Notions of Group knowledge

Some other notions of group knowledge:
(1) 'Someone in the group knows ϕ ': $S_{G} \phi={ }_{d f} \bigvee_{i \in G} K_{i} \phi$
(2) 'The knowledge is distributed over the group G ': $D_{G} \phi$ if $\left\{\psi \mid K_{i} \psi(i \in G)\right\} \vdash \phi$
However, are they enough to characterize cooperation?

Notions of Group knowledge

Some other notions of group knowledge:
(1) 'Someone in the group knows ϕ ': $S_{G} \phi={ }_{d f} \bigvee_{i \in G} K_{i} \phi$
(2) 'The knowledge is distributed over the group G ': $D_{G} \phi$ if $\left\{\psi \mid K_{i} \psi(i \in G)\right\} \vdash \phi$

However, are they enough to characterize cooperation?

- $S_{G} \phi$ and $D_{G} \phi$ are even weaker than $E_{G} \phi$.
- Attaining $D_{G} \phi$ needs to collect all knowledge of every agent in group but the 'cooperation' happens between the outsider and the group instead of the agents.
Thus, these three concepts are not enough. We need a stronger concept.

What is 'Common'?

Another important concept in philosophy: Common Sense
(1) Ordinary, normal, or average understanding (without this a man is foolish or insane) or the general sense of mankind, or of a community
(2) Those plain, self-evident truths or conventional wisdom that one needed no sophistication to grasp and no proof to accept precisely because they accorded so well with the basic (common sense) intellectual capacities and experiences of the whole social body.
(3) We mean the widely shared and seemingly self-evident conclusions drawn from this faculty, the truisms about which all sensible people agree without argument or even discussion

What is 'Common'?

What can we obtain by those definitions of Common Sense?

- Some keywords, especially occurred repeatedly in definitions:
(1) unsophisticated
(2) self-evident
(3) widely shared
(9) all human
(6) general
- Except words to define 'sense', other words serve for 'Common'. We can conclude that 'common' in 'common sense' means ordinarily and normally exists in all humans' faculty. And no matter who you are, you have such faculty and could make sure any other have, even the basic background information during any communication.

A Brief History of Common knowledge

(1) J.E.Littewoods: Common-Knowledge-type reasoning(1953)

A Brief History of Common knowledge

(1) J.E.Littewoods: Common-Knowledge-type reasoning(1953)
(Presupposition: anyone who can make sure herself being laughable will be sad.) Three ladies, A, B, C in a railway carriage all have dirty faces and are all laughing. It suddenly flashes on A : why doesn't B realize C is laughing at her?-Heavens! I must be laughable!

A Brief History of Common knowledge

(1) J.E.Littewoods: Common-Knowledge-type reasoning(1953)
(Presupposition: anyone who can make sure herself being laughable will be sad.) Three ladies, A, B, C in a railway carriage all have dirty faces and are all laughing. It suddenly flashes on A : why doesn't B realize C is laughing at her?-Heavens! I must be laughable!

- Here is a mathematical reasoning: If I, A, am not laughable, B will think: if I, B, am not laughable, C has noting to laugh at. Since B is not sad, I, A, must be laughable.
- The reasoning needs inference about others' knowledge. i.e. A has to infer that what B will do according to B's information.

A brief History of Common knowledge

(2) Thomas. J. Schelling: Common interests (Tacit Coordination)(1960)

A man lost his wife in a department store. It is likely that each will think of some obvious place to meet, so obvious that each will be sure that the other is sure that it is 'obvious' to both of them....Not 'what I would do if I were her?' but 'what would I do if I were she wondering what she would do if she were I wondering what I would do if I were she...'

A brief History of Common knowledge

(3) Morris. F. Friedell: the first mathematical analysis and application of the notion of common knowledge.(1967)

A brief History of Common knowledge

(3) Morris. F. Friedell: the first mathematical analysis and application of the notion of common knowledge.(1967)

- $A x$ represents 'Agent A believe that x '.
- ABx represents 'Agent A believe that B believe that x '.
- $(A \cap B) x$ represents 'Agent A and B believe that x '.

A brief History of Common knowledge

(3) Morris. F. Friedell: the first mathematical analysis and application of the notion of common knowledge.(1967)

- Ax represents 'Agent A believe that x '.
- $A B x$ represents 'Agent A believe that B believe that x '.
- $(A \cap B) x$ represents 'Agent A and B believe that x '.
- $C o_{A, B} x=\bigcap($ all compositions of A and $B) x$ $=\bigcap(A, B, A B, B A, A A A, A A B, A B A, B A A, \ldots) x$ $=\bigcap_{1 \leq i}^{\infty}(A \cap B)^{i} x$

A brief History of Common knowledge

(4) David Lewis: the first full-fledged philosophical analysis of common knowledge.

A brief History of Common knowledge

(4) David Lewis: the first full-fledged philosophical analysis of common knowledge.
A state of affairs S is a basis for common knowledge:
(1) You and I have reason to believe that S holds.
(2) S indicates to both of us that you and I have reason to believe that A holds.
(3) S indicates to both of us that you will return.

A brief History of Common knowledge

(4) David Lewis: the first full-fledged philosophical analysis of common knowledge.
A state of affairs S is a basis for common knowledge:
(1) You and I have reason to believe that S holds.
(2) S indicates to both of us that you and I have reason to believe that A holds.
(3) S indicates to both of us that you will return.
S indicates to x that something if and only if, if x has reason to believe that S held, x would thereby have reason to believe that something.

A brief History of Common knowledge

(4) David Lewis: the first full-fledged philosophical analysis of common knowledge.
A state of affairs S is a basis for common knowledge:
(1) You and I have reason to believe that S holds.
(2) S indicates to both of us that you and I have reason to believe that A holds.
(3) S indicates to both of us that you will return.
S indicates to x that something if and only if, if x has reason to believe that S held, x would thereby have reason to believe that something.
(0)S indicates to both of us that each of us has reason to believe that you will return.((2) applied to (3))

A brief History of Common knowledge

(4) David Lewis: the first full-fledged philosophical analysis of common knowledge.
A state of affairs S is a basis for common knowledge:
(1) You and I have reason to believe that S holds.
(2) S indicates to both of us that you and I have reason to believe that A holds.
(3) S indicates to both of us that you will return.
S indicates to x that something if and only if, if x has reason to believe that S held, x would thereby have reason to believe that something.
(1) S indicates to both of us that each of us has reason to believe that you will return.((2) applied to (3))
© S indicates to both of us that each of us has reason to believe that the other has reason to believe that you will return.((2) applied to (4))

A brief History of Common knowledge

(4) David Lewis: the first full-fledged philosophical analysis of common knowledge.
A state of affairs S is a basis for common knowledge:
(1) You and I have reason to believe that S holds.
(2) S indicates to both of us that you and I have reason to believe that A holds.
(3) S indicates to both of us that you will return.
S indicates to x that something if and only if, if x has reason to believe that S held, x would thereby have reason to believe that something.
(1) S indicates to both of us that each of us has reason to believe that you will return.((2) applied to (3))
© S indicates to both of us that each of us has reason to believe that the other has reason to believe that you will return.((2) applied to (4)) And so on ad infinium

A brief History of Common knowledge

(5) With amount of studies on common knowledge in 1980s, the definition we used today finally formed:

- $C_{G} \phi=\bigwedge_{1 \leq k}^{\infty} E_{G}^{k} \phi$
- $M, s \models C_{G} \phi \Leftrightarrow M, t \models \phi$ for all t that are G-reachable from s (a state t to be reachable from state s in k steps if there exist states $s_{0}, s_{1}, s_{2}, \ldots, s_{k}$ such that $s_{0}=s, s_{k}=t$ and for all j with $0 \leq j \leq(k-1)$, there exists $i \in G$ such that $\left.\left(s_{j}, s_{j+1}\right) \in R_{i}\right)$

Different Definitions

Firstly, we look back on the classical definition of Common knowledge, $C_{G} \phi$:

Different Definitions

Firstly, we look back on the classical definition of Common knowledge, $C_{G} \phi$:
(1) $C_{G} \phi=\bigwedge_{1 \leq k}^{\infty} E_{G}^{k} \phi$

Different Definitions

Firstly, we look back on the classical definition of Common knowledge, $C_{G} \phi$:
(1) $C_{G} \phi=\bigwedge_{1 \leq k}^{\infty} E_{G}^{k} \phi$
(2) $C_{G} \phi=E_{G} \phi \wedge C_{G} E_{G} \phi$

Different Definitions

Firstly, we look back on the classical definition of Common knowledge, $C_{G} \phi$:
(1) $C_{G} \phi=\bigwedge_{1 \leq k}^{\infty} E_{G}^{k} \phi$
(2) $C_{G} \phi=E_{G} \phi \wedge C_{G} E_{G} \phi$
(3) $C_{G} \phi=E_{G} \phi \wedge \bigwedge_{i \in G} C_{G} K_{i} \phi$

Different Definitions

Firstly, we look back on the classical definition of Common knowledge, $C_{G} \phi$:
(1) $C_{G} \phi=\bigwedge_{1 \leq k}^{\infty} E_{G}^{k} \phi$
(2) $C_{G} \phi=E_{G} \phi \wedge C_{G} E_{G} \phi$
(3) $C_{G} \phi=E_{G} \phi \wedge \bigwedge_{i \in G} C_{G} K_{i} \phi$
(9) $C_{G} \phi=\bigwedge_{s \in G^{+}} K_{s} \phi$

Different Definitions

Firstly, we look back on the classical definition of Common knowledge, $C_{G} \phi$:
(1) $C_{G} \phi=\bigwedge_{1 \leq k}^{\infty} E_{G}^{k} \phi$
(2) $C_{G} \phi=E_{G} \phi \wedge C_{G} E_{G} \phi$
(3) $C_{G} \phi=E_{G} \phi \wedge \bigwedge_{i \in G} C_{G} K_{i} \phi$
(9) $C_{G} \phi=\bigwedge_{s \in G^{+}} K_{s} \phi$

The definitions above are equivalent. We just do some transformations on form.

Different Definitions

Firstly, we look back on the classical definition of Common knowledge, $C_{G} \phi$:
(1) $C_{G} \phi=\bigwedge_{1 \leq k}^{\infty} E_{G}^{k} \phi$
(2) $C_{G} \phi=E_{G} \phi \wedge C_{G} E_{G} \phi$
(3) $C_{G} \phi=E_{G} \phi \wedge \bigwedge_{i \in G} C_{G} K_{i} \phi$
(9) $C_{G} \phi=\bigwedge_{s \in G^{+}} K_{s} \phi$

The definitions above are equivalent. We just do some transformations on form.

- Why do we need these logical-equivalent forms?
(1) Different definitions of $E w_{G}$
(2) $K w$ has no distribution with \wedge

Different Definitions

Now we want to define what is 'Commonly knowing whether'.

- The definition of 'knowing Whether':

$$
K w_{i} \phi=K_{i} \phi \vee K_{i} \neg \phi
$$

Different Definitions

Now we want to define what is 'Commonly knowing whether'.

- The definition of 'knowing Whether':

$$
K w_{i} \phi=K_{i} \phi \vee K_{i} \neg \phi
$$

- Before we use $K w$ to define $C w$, we should define $E w$ first.
(1) $E w_{G}^{1} \phi=E_{G} \phi \vee E_{G} \neg \phi$
(2) $E w_{G}^{2} \phi=\bigwedge_{i \in G} K w_{i} \phi$
- The two definitions are not equivalent over \mathcal{K}-frames.

Different Definitions

Now we begin to define $C w$:
(1) Inspired by $K w_{i} \phi=K_{i} \phi \vee K_{i} \neg \phi$, we could define $C w_{G}$ as follows:

$$
C w_{G}^{1} \phi=C_{G} \phi \vee C_{G} \neg \phi
$$

(2) Inspired by $C_{G} \phi=E_{G} \phi \wedge C_{G} E_{G} \phi$, we could define $C w_{G}$ as follows:

$$
\begin{aligned}
& C w_{G}^{21} \phi=E w_{G}^{1} \phi \wedge C_{G} E w_{G}^{1} \phi \\
& C w_{G}^{22} \phi=E w_{G}^{2} \phi \wedge C_{G} E w_{G}^{2} \phi
\end{aligned}
$$

Different Definitions

(3) Inspired by $C_{G} \phi=\bigwedge_{1 \leq k}^{\infty} E_{G}^{k} \phi$, we could define $C w_{G}$ as follows:

$$
\begin{aligned}
& C w_{G}^{31} \phi=E w_{G}^{1} \phi \wedge E w_{G}^{1} E w_{G}^{1} \phi \wedge E w_{G}^{1} E w_{G}^{1} E w_{G}^{1} \phi \ldots \\
& C w_{G}^{32} \phi=E w_{G}^{2} \phi \wedge E w_{G}^{2} E w_{G}^{2} \phi \wedge E w_{G}^{2} E w_{G}^{2} E w_{G}^{2} \phi \ldots
\end{aligned}
$$

(4) Inspired by $C_{G} \phi=E_{G} \phi \wedge \bigwedge_{i \in G} C_{G} K_{i} \phi$, we could define $C w_{G}$ as follows:

$$
C w_{G}^{4}=E w_{G}^{2} \phi \wedge \bigwedge_{i \in G} C w_{G}^{1} K w_{i} \phi
$$

(5)* Inspired by $C_{G} \phi=\bigwedge_{s \in G^{+}} K_{s} \phi$, we could define $C w_{G}$ as follows:

$$
C w_{G}^{5} \phi=\bigwedge_{s \in G^{+}} K w_{s} \phi
$$

Implication Relations among $C w_{G}$

- $\vDash C w^{1} \phi \rightarrow C w^{2} \phi, \vDash C w^{2} \phi \rightarrow C w^{3} \phi$.

Proof.

Since $\vDash C \phi \rightarrow C E \phi$, and $\vDash C E \phi \rightarrow C E w \phi$ (because $\vDash E \phi \rightarrow E w \phi$), we have $\vDash C \phi \rightarrow C E w \phi$. Similarly, we obtain $\vDash C \neg \phi \rightarrow C E w \neg \phi$. It is easy to see that $\vDash E w \phi \leftrightarrow E w \neg \phi$. Therefore, $\vDash C \phi \vee C \neg \phi \rightarrow C E w \phi$, i.e., $\vDash C w^{1} \phi \rightarrow C w^{2} \phi$. Since $C E w \phi=E w \phi \wedge E E w \phi \wedge \cdots$, and also $\vDash E \phi \rightarrow E w \phi$, we can show that $\vDash C E w \phi \rightarrow E w \phi \wedge E w E w \phi \wedge \cdots$, that is, $\vDash C w^{2} \phi \rightarrow C w^{3} \phi$.

Implication Relations among $C w_{G}$

- $\vDash C w^{2} \phi \rightarrow C w^{4} \phi$. As a corollary, $\vDash C w^{1} \phi \rightarrow C w^{4} \phi$

Proof.

Since $C E w^{2} \phi \equiv C\left(\bigwedge_{i \in G} K w_{i} \phi\right) \equiv \bigwedge_{i \in G} C K w_{i} \phi$, whereas
$\bigwedge_{i \in G} C w^{1} K w_{i} \phi \equiv \bigwedge_{i \in G}\left(C K w_{i} \phi \vee C \neg K w_{i} \phi\right)$, it is easy to see that $\vDash C E w^{2} \phi \rightarrow C w^{4} \phi$.
Moreover, Since $\vDash E w^{1} \phi \rightarrow E w^{2} \phi, \vDash C E w^{1} \phi \rightarrow C E w^{2} \phi$. Thus $\vDash C E w^{1} \phi \rightarrow C w^{4} \phi$.
Therefore, no matter whether $E w$ is $E w^{1}$ or $E w^{2}$, we always have $\vDash C E w \phi \rightarrow C w^{4} \phi$, i.e., $\vDash C w^{2} \phi \rightarrow C w^{4} \phi$.

Implication Relations among $C w_{G}$

Other implication conclusions:

- $\vDash C w_{G}^{2} \phi \rightarrow C w_{G}^{5} \phi$
- $\neq C w_{G}^{4} \phi \rightarrow C w_{G}^{5} \phi$
- $\forall \subset C w_{G}^{2} \phi \rightarrow C w_{G}^{1} \phi$
- $\forall C C w_{G}^{3} \phi \rightarrow C w_{G}^{2} \phi$
- $\neq C w_{G}^{3} \phi \rightarrow C w_{G}^{4} \phi$
- $\neq C w_{G}^{4} \phi \rightarrow C w_{G}^{3} \phi$
- $\neq C w_{G}^{5} \phi \rightarrow C w_{G}^{3} \phi$
- $\forall C C w_{G}^{3} \phi \rightarrow C w_{G}^{5} \phi$
- $\forall \subset C w_{G}^{5} \phi \rightarrow C w_{G}^{4} \phi$
- $\forall \subset C w_{G}^{5} \phi \rightarrow C w_{G}^{2} \phi$

Implication Relations among $C w_{G}$

- Thus we have the implication relations as follows:

$$
\text { over } \mathcal{K} \text { - frames }
$$

- There is neither of them are equivalent over \mathcal{K}-frames

Implication Relations among $C w_{G}$

- Considering \mathcal{T}-frames, we have:

$$
E w_{G}^{1} \phi=E w_{G}^{2} \phi
$$

- We have the following implication relations:

$$
\text { over } \mathcal{T} \text { - frames }
$$

- Thus we have $C w_{G}^{1} \phi \leftrightarrow C w_{G}^{2} \phi \leftrightarrow C w_{G}^{3} \phi \leftrightarrow C w_{G}^{5} \phi$

Expressivity of the Language

- Over \mathcal{T}-frames, $P L K w C w$ is equally expressive as $P L K C$.

$t_{1}(p)$	$=p$	$t_{2}(p)$	$=p$
$t_{1}(\neg \phi)$	$=\neg t_{1}(\phi)$	$t_{2}(\neg \phi)$	$=\neg t_{2}(\phi)$
$t_{1}(\phi \wedge \psi)$	$=t_{1}(\phi) \wedge t_{1}(\psi)$	$t_{2}(\phi \wedge \psi)$	$=t_{2}(\phi) \wedge t_{2}(\psi)$
$t_{1}\left(K w_{i} \phi\right)$	$=K_{i} t_{1}(\phi) \vee K_{i} \neg t_{1}(\phi)$	$t_{2}\left(K_{i} \phi\right)$	$=K w_{i} t_{2}(\phi) \wedge t_{2}(\phi)$
$t_{1}(E w \phi)$	$=E t_{1}(\phi) \vee E \neg t_{1}(\phi)$	$t_{2}(E \phi)$	$=E w t_{2}(\phi) \wedge t_{2}(\phi)$
$t_{1}(C w \phi)$	$=C t_{1}(\phi) \vee C \neg t_{1}(\phi)$	$t_{2}(C \phi)$	$=C w t_{2}(\phi) \wedge t_{2}(\phi)$

- Over \mathcal{K}-frames, $P L K w C w^{1} \prec P L K C, P L K w C w^{2} \prec P L K C$ (if G is finite)

Expressivity of the Language

- However, $C w^{5}$ cannot be expressed by K and C.

Expressivity of the Language

- However, $C w^{5}$ cannot be expressed by K and C.

Recall the concepts of distinguishing power and expressive power here.:
(1) Distinguishing power: can a language tell the difference between two models.
For any two models (M, s) and (N, r), for any $\phi \in L_{1}, M, s \models \phi$ and $N, r \models \neg \phi$ implies there exists a formula $\psi \in L_{2}$ such that $M, s \models \psi$ and $N, r \models \neg \psi$. We say $L_{1} \preceq_{d} L_{2}$.

Expressivity of the Language

- However, $C w^{5}$ cannot be expressed by K and C.

Recall the concepts of distinguishing power and expressive power here.:
(1) Distinguishing power: can a language tell the difference between two models.
For any two models (M, s) and (N, r), for any $\phi \in L_{1}, M, s \models \phi$ and $N, r \models \neg \phi$ implies there exists a formula $\psi \in L_{2}$ such that $M, s \models \psi$ and $N, r \models \neg \psi$. We say $L_{1} \preceq_{d} L_{2}$.
(2) Expressive power: which classes of models can be defined by a formula of the language.
For any two classes of models \mathcal{M} and \mathcal{N}, for any formula $\phi \in L_{1}$, $\mathcal{M} \models \phi$ and $\mathcal{N} \models \neg \phi$ implies there exists one formula $\psi \in L_{2}$ such that $\mathcal{M} \models \psi$ and $\mathcal{N} \models \neg \psi$. We say $L_{1} \preceq_{e} L_{2}$.

Expressivity of the Language

- Thus, in order to prove $C w^{5}$ cannot be expressed by K and C, we have to find two classes of \mathcal{K}-models \mathcal{M} and \mathcal{N} such that there is some formula $\phi \in P L K w C w, \mathcal{M} \models \phi$ and $\mathcal{N} \not \vDash \phi$ but we cannot find a formula in $P L K C$ do so.

Expressivity of the Language

- Define $M=\left\{M_{n} \mid 1 \leq n\right\}$ and $N=\left\{N_{n} \mid 1 \leq n\right\}$ as follows:

For every $n \geq 1, M_{n}=\left\langle W_{n}, R_{n}, V_{n}\right\rangle$ where

$$
W_{n}=\left\{r, s_{011}, t_{011}\right\} \cup\left\{s_{i j k} \mid 1 \leq i \leq n, 1 \leq j \leq 2^{n-1}, k=1,2\right\} \cup\left\{t_{i j k} \mid\right.
$$

$$
\left.1 \leq i \leq n+1,1 \leq j \leq 2^{n}, k=1,2\right\}
$$

$$
R_{n}=\left\{<r, s_{011}>,<r, t_{011}>\right\} \cup\left\{<s_{i j k}, s_{(i+1)(2 j+k-2) k^{e}}>\mid s_{i j k} \in\right.
$$

$$
\left.W_{n}, s_{(i+1)(2 j+k-2) k^{k}} \in W_{n}, k^{\prime}=1,2\right\} \cup\left\{<t_{i j k}, t_{(i+1)(2 j+k-2) k^{k}}>\mid t_{i j k} \in\right.
$$

$$
\left.W_{n}, t_{(i+1)(2 j+k-2) k^{k}} \in W_{n}, k^{\prime}=1,2\right\}
$$

$$
V_{n}(p)=W_{n}-\left\{t_{(n+1) 2^{n 2}}, t_{(n+1) 2^{(n-1) 2}}\right\}
$$

Then we define $N_{n}=\left\langle W_{n}^{\prime}, R_{n}^{\prime}, V_{n}^{\prime}\right\rangle$ from M_{n} :

$$
\begin{aligned}
& W_{n}^{\prime}=W_{n} \cup\left\{w_{011}\right\} \cup\left\{w_{i j k} \mid 1 \leq i \leq n, 1 \leq j \leq 2^{n-1}, k=1,2\right\} \\
& R_{n}^{\prime}=R_{n} \cup\left\{<r, w_{011}>\right\} \cup\left\{<w_{i j k}, w_{(i+1)(2 j+k-2) k^{\prime}}>\mid w_{i j k} \in\right. \\
& \left.W_{n}^{\prime}, w_{(i+1)(2 j+k-2) k^{\prime}} \in W_{n}^{\prime}, k^{\prime}=1,2\right\} \\
& V_{n}^{\prime}(p)=W_{n}^{\prime}-\left\{t_{(n+1) 2^{n} 2}, t_{(n+1) 2^{(n-1)} 2}, w_{n 2 n-12}\right\}
\end{aligned}
$$

Expressivity of the Language

\mathcal{M} and \mathcal{N} are as follows:

Expressivity of the Language

- We can find that for every $M_{n} \in \mathcal{M}$, there is $M_{n}, r \models K w C w_{G}^{5} \phi$ and for every $N_{n} \in \mathcal{N}$, there is $N_{n}, r \models \neg K w C w_{G}^{5} \phi$.
- However, for every $n \geq 1, M_{n}, r \models \phi \Leftrightarrow N_{n}, r \models \phi$ if ϕ is $P L K w C w$-formula and $d(\phi) \leq n$. Thus, for any $P L K w C w$-formular, since its modal depth is finite, we can always find a n such that ϕ cannot distinguish $\left(M_{n}, r\right)$ and $\left(N_{n}, r\right)$. That means we cannot find a $P L K w C w$-formula to distinguish these two classes of models.

Problems in Axiomatization

- Axiom System of PLKC
(1) Axioms and Rules in K-System
(2) $C_{G}(\phi \rightarrow \psi) \rightarrow\left(C_{G} \phi \rightarrow C_{G} \psi\right)$
(3) $C_{G} \phi \rightarrow\left(\phi \wedge E_{G} C_{G} \phi\right)$ (mix)
(9) $C_{G}\left(\phi \rightarrow E_{G} \phi\right) \rightarrow\left(\phi \rightarrow C_{G} \phi\right)$ (induction axiom)
(6) from ϕ, infer $C_{G} \phi$
- However, $P L K w C w$ have no such axioms.
(1) $K w$ has no K-axiom.
(2) $C w$ has no distribution.
(3) $C w$ has no mix.
(9) $C w$ has no induction.

Problems in Axiomatization

Inspired by the following $K w$-axioms:

- $K w(\chi \rightarrow \phi) \wedge K w(\neg \chi \rightarrow \phi) \rightarrow K w \phi$
- $K w \phi \rightarrow k w(\phi \rightarrow \psi) \vee K w(\neg \phi \rightarrow \chi)$

We have verified that there are
(1) $C w(\chi \rightarrow \phi) \wedge C w(\neg \chi \rightarrow \phi) \rightarrow C w \phi$ if $C w$ is $C w^{1}, C w^{21}, C w^{22}, C w^{5}$
(2) $C w \phi \rightarrow C w(\phi \rightarrow \psi) \vee C w(\neg \phi \rightarrow \chi)$ if $C w$ is $C w^{1}, C w^{2} 1 . C w^{2} 2$ and $C w^{5}$ are not valid.
(3) I do not verify the case of $C w^{3}$ and $C w^{4}$.

Generally, we ask for help from proof of completeness in order to finish the complete axiomatization.

Classical Proof Idea of Completeness of PLKC

We may 'borrow' the idea of the proof in PLKC in order to prove the completeness of $P L K w C w$.

- Basic proof idea: Canonical Model.
- However, PLKC is not impact. Consider the following set:

$$
\Gamma=\left\{E_{G}^{n} p \mid n \in N\right\} \cup\left\{\neg C_{G} p\right\}
$$

- Every finite subset of Γ is satisfiable, bu Γ is not! Thus we cannot guarantee that the union of countably many consistent sets is satisfiable.

Classical Proof Idea of Completeness of PLKC

We need to restrict maximal consistent set of formulas to finite maximal consistent set of formulas.

Classical Proof Idea of Completeness of PLKC

We need to restrict maximal consistent set of formulas to finite maximal consistent set of formulas.

- How to restrict? For every formula, we define a closure $c l(\phi)$:
(1) $\phi \in \operatorname{cl}(\phi)$.
(2) if $\psi \in \operatorname{cl}(\phi)$, then $\operatorname{sub}(\psi) \in \operatorname{cl}(\phi)$.
(3) if $\psi \in \operatorname{cl}(\phi)$ and ψ is not negation, then $\neg \psi \in \operatorname{cl}(\phi)$.
(9) if $C_{G} \phi \in \operatorname{cl}(\phi)$, then $\left\{K_{i} C_{G} \psi \mid i \in G\right\} \subset c l(\phi)$.

Classical Proof Idea of Completeness of PLKC

We need to restrict maximal consistent set of formulas to finite maximal consistent set of formulas.

- How to restrict? For every formula, we define a closure $c l(\phi)$:
(1) $\phi \in \operatorname{cl}(\phi)$.
(2) if $\psi \in \operatorname{cl}(\phi)$, then $\operatorname{sub}(\psi) \in \operatorname{cl}(\phi)$.
(3) if $\psi \in \operatorname{cl}(\phi)$ and ψ is not negation, then $\neg \psi \in \operatorname{cl}(\phi)$.
(9) if $C_{G} \phi \in \operatorname{cl}(\phi)$, then $\left\{K_{i} C_{G} \psi \mid i \in G\right\} \subset c l(\phi)$.
- We can prove that the closure is finite.
- When construct the canonical model, we just use the maximal consistent set of formulas in the closure, which guarantees that all these sets can be satisfied.

Classical Proof Idea of Completeness of PLKC

- Construction of the canonical model is as usual.
- To Prove Truth Lemma, $\phi \in \Gamma \Leftrightarrow\left(M^{c}, \Gamma\right) \models \phi$, we need to prove:
- If $C_{G} \psi \in \Phi$, then $C_{G} \psi \in \Gamma$ iff every G-path from Γ is a ψ-path when the case of $\phi=C_{G} \psi$.
- With this lemma, we can finish the proof of Truth Lemma in help with Inductive Hypothesis.

Difficulties in proof of Completeness of $P L K w C w$

- We cannot find an obvious property of $C w_{G}^{5} \phi$ where ϕ appears regularly. For lack of this, we cannot use Inductive Hypothesis when proving Truth Lemma.

Difficulties in proof of Completeness of $P L K w C w$

- We cannot find an obvious property of $C w_{G}^{5} \phi$ where ϕ appears regularly. For lack of this, we cannot use Inductive Hypothesis when proving Truth Lemma.
- What we only found is, if $M, s \models C w_{G}^{5} \phi$ where M is a complete two-branch tree, the number of nodes where ϕ is true is even on every layer of the tree.

Difficulties in proof of Completeness of $P L K w C w$

- However, we cannot guarantee that the canonical model we construct in traditional way is a two-branch tree.
(1) In order to solve this problem, we hope we can find a way to transform the canonical model into a two-branch tree. But we can only unravel the canonical model into a tree model.
(2) We have proved that unraveling keeps the satisfaction of every formula in PLKwCw in corresponding nodes: $M^{c}, g(s) \models \phi$ iff $M^{T}, s \models \phi$ for every $\phi \in P L K w C w$.

And then, we are blocked...

Following Work

(1) Through proving the completeness, we hope give the complete axiomatization.
(2) By the study on $C w_{G}^{5}$, we hope to brighten a path to 'what is the ultimate ignorance?'.
A tentative idea is:

$$
I_{G} \phi=d f \bigwedge_{s \in G^{+}} \neg K w_{s} \phi
$$

